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Abstract-This article represents the second part of the work originated in [l]. Study is made of qualitative 
properties and stability of trajectories of simultaneous heat and mass transfer in reacting flow systems. For 
systems where the singular point is of quasi-equilibrium type the thermodynamic Liapunov function, V, 
resulting from the entropy balance, is an efficient stability (or instability) criterion., Whereas in the case of 
stationary non-equilibrium singular point a generalized function V,, defined as the sum of V and some 

“kinetic” term, is suitable for predicting the qualitative properties and stability of trajectories. 

A, = [aik], matric of coefficients aik, equa- 

tion (32); 

A,B,C,D components of reacting fluid; 

a, ratio of heat exchange area and volume of 
catalytic zone [m- ‘1; 

4 = kF/u,, volumetric coefficient of heat 
exchange (in computations B was taken 
as 23168.6) [kJ K-’ h-i m-3]; 

B, = [biJ> matrix of second order deriv- 
atives in Taylor expansion of function V; 

CAICIhCD invariants, relating concentrations of 
components A, B, D and C [kg kg- ‘1; 

CP, specific heat at constant pressure 
[kJ kmol-’ K-l]; 

D, symmetric matrix of function V’, defined 

in terms of matrices A and B; 

ElLfl> activation energy and frequency factor, 
respectively, equation (24) [kJ kmol- ‘1; 

h, apparatus length [kJ kmol-‘1 ; 
AR, molar heat of reaction [kJ kmol- ‘I; 

;;, 

specific enthalpy of solution [kJ kg-‘]; 
= A-lT (D - B)A-‘, “kinetic matrix”; 

k, heat exchange coefficient 
[kJ m -2K-1h-11. 

MC, molar mass of component C 
[kg kmol- ‘1; 

s, specific entropy of solution 
[kJK-‘kg-‘]; 

T, temperature [K] ; 
r, space time [schemes (a) and (b), Fig. l] or 

chronological time [scheme (c), Fig. 11; 
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$The process at a singular point is equilibrium, quasi- 
equilibrium or steady. In the state of quasi-equilibrium 
(typical of concurrent and counter-current flow processes) 
some small quantity of heat dissipation, because of phase slip, 
takes place. It is negligible. 

v, 8, 

V 

;I, 
W, 
W, 

X, 

thermodynamic Liapunov functions 
[kJ kg-‘] or [kJkg_‘K-l]; 

reactor volume [m’] ; 
“nonclassical” thermodynamic Lia- 
punov function [kJ kg- ‘I; 
reactants flow [kg h- ‘I; 
wA, wB, w(., wg, mass fractions of reactants 
A, B, C and D in reacting solution 

[kg kg- ‘I; 
state vector. 

Greek symbols 

average residence time in reactor [h] ; 
chemical affinity [kJ kmol- ‘1; 

partial thermodynamic potentials of re- 
actants [kJ kmol- ‘1; 

catalyst porosity ; 
density of reacting solution [kg m-“1 ; 
entropy source [kJ K-1m-3h-1]; 
stoichiometic coefficient. 

Subscripts 

f, 
h, 
i, 

M, 

final state ; 
unreacting fluid exchanging heat ; 
initial state; 

two-phase quantity related to the unit 
mass flow in reaction zone. 

1. INTRODUCTION 

IN [I] THE thermodynamic approach was used to 
investigate the qualitative properties of the trajectories 

of stationary coupled heat and mass transfer processes 
occurring in chemically inactive flow systems. We have 
analysed those non-reacting systems which were char- 
acterized by the quasiequilibrium singular pointt of 
the related ordinary differential equations. The analysis 

in [l] has included the reduction of coordinates for the 
differential equations of the system, by separating so 
called process invariants (i.e. the quantities that do not 
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change during process course), determination of the 

coordinates of the singular point corresponding with 
the defined values of invariants as well as the con- 
struction of the Liapunov’s function constituting the 

stability criterion of the singular state and also the 
criterion of the qualitative properties of trajectories. 
The Liapunov functions have been constructed in [l] 
on the basis of the entropy balance as some “thermo- 
dynamic potentials of the flow processes”, V, which 
constitute the appropriate counterparts of the usual 
thermodynamic potentials of closed systems. 

The present article contains both an extension of the 
theory [l] to the processes with chemical reaction as 
well as dealing with the situation when the thermody- 
namic approach ceases to be efficient. The article is 

composed of two parts. In the first one the process of 
the chemical synthesis that occurs in the stationary 

concurrent and countercurrent systems is examined, 
Fig. 1, schemes (a) and (b). For such systems, which are 
characterized by a quasi-equilibrium singular point, 
the effectiveness of the purely thermodynamical Lia- 

punov function V is proved. In the second part the 
unsteady state process in continuous flow stirred-tank 

reactor (CSTR) [Fig. 1, scheme (c)] is investigated. 
This reactor constitutes the more complicated system 
due to the non-equilibrium singular state. It will be 
shown that, in consideration of this non-equilibrium 

state, the purely thermodynamic criterion V may fail 
when determining the stability and, therefore, some 

generalized function, V,, will be proposed. This func- 
tion does not have a purely thermodynamic origin as, 
apart from the thermodynamic terms, it includes the 
terms connected with the kinetics of reactions. 

The advantage of the function V’, is that in a 
sufficiently small finite surrounding of the singular 
point its time derivative ri, is always of definite sign 
(this cannot always be said about V in the case ofnon- 

equilibrium). Thanks to this property I/% makes it 
possible to prove the stability or instability of the 

singular point (according to Liapunov’s second theo- 
rem or Chetayev’s theorem, respectively [2]) as well as 
the stability (or instability) of trajectories in some finite 
region where the derivative ri, has a constant sign. 

It must be stressed that, given a problem, the same 
mathematical method (the second Liapunov method) 
may be used to two different purposes. 

In the case of the stationary flow processes [Fig. 1, 
schemes (a) and (b)] developing in the space along the 
apparatus axis, attention is paid to the qualitative 
properties of the family of trajectories found in the 
neighbourhood of the singular point. Each member of 
this family refers to the stationary process. In this case 
the purpose of the analysis is usually to perform a 

*The value of invariant i, can be computed from the 
knowledge of enthalpies i, and i in a detinite section of the 
reactor. Then solution of equation (8) together with tic = 0 
and T = 0 [equations (2) and (3)] makes it possible to 
determine the parameters of the singular point TF and w: [see 
also equations (9) and (lo)]. 
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qualitative survey as well as to select a trajectory which 
can be considered the best of all steady trajectories. 

However, in the case of the unsteady processes [Fig. 

1, scheme (c)] developing in chronological time, 
Liapunov’s second method is most often used in order 
to determine the stability (or instability)of the dynami- 
cal system which is subject to perturbations. 

2. MATHEMATICAL MODEL OF THE PROCESSES WITH 
THE QUASI-EQUILIBRIUM SINGULAR STATE 

In order to show the effectiveness of the purely 

thermodynamic approach for the quasi-equilibrium 
state we shall consider the changes in temperature and 
concentration of the auto-thermal concurrent and 
countercurrent tubular reactors [Fig. 1, schemes (a) 
and (b)]. Reactors of this type have important appli- 
cations, for example in the process of ammonia 
synthesis. 

During the exothermic reaction, 

\),.,A + vHB = vJ, (1) 

heat exchange occurs between the reactive catalytic 
zone and the non-reactive non-catalytic zone, in which 
the reactants are heated. It is assumed that besides the 
reactants A, B, C, there is the non-reacting component, 
D, in the fluid. Changes of the process state in the space 
time, t, may be characterized by the two differential 
equations [(2) and (311 describing respectively, the 
mass balance of the component C as well as the heat 

balance : 

dw, 
---=rc.M,(r:.p))’ 
dt 

g = {-A%., + ka(T, - T)} (~ECJ’ (3) 

[see also equation (2417. 
The remaining variables characterizing the system 

may be computed from invariants resulting cor- 
respondingly from the conservation of the number of 
atoms of elements : 

VP, 
c, = WA + WC- = 

vaM, 
vcMc 

WiA + wick 
v<.M,’ 

(4) 

v*M, vaM.., 
cs = wn + WC-- = WiB + w. __ 

vcMc ” vCMc’ 
(5) 

C” = WD = wiIh (6) 
as well as from the conservation of energy: 

i(T, w) - i,(T,, Wi) = i, = 0 

(countercurrent reactor) (7) 

i,(T,, wi) + i(T, w) = i, = const* 

(concurrent reactor). (8) 

Note that if the reactors were not auto-thermal then 

the quotient of the mass flow rates of phases flowing 
through each zone would appear in equations (7) 
and (8). ~ , 
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Since we are dealing with flow processes it appears 
from equations (2) and (3) that the singular point is the 
state of thermodynamic quasi-equilibrium for which 
the following conditions must be satisfied : 

7-z = TO, (9) 

A/i=O, (10) 

where 

A@ = vf ‘(vcM,~c - vAM,lr, - vgM~~t& 

[of course (10) is equivalent to the condition rc = 01. 

3. CONSTRUCTION OF THE THERMODYNAMIC 
LIAPUNOV FUNCTION I’ 

The time derivative of the potential criterion I/ for 

the processes (a) and (b) in Fig. 1 may be found from 
the differential balance of entropy : 

crF.dh+ W.f& W.S, 
= W(S + dS) + W(S, + dS,) 

(11) 

(the upper sign pertains to the concurrent reactor and 
the lower sign to the countercurrent reactor). 

After simplification and using the relationship 

s.p.F*dh/W~ddt (12) 

we obtain from equation (11): 

0 dS dS,, dP -. 
p.c 

=dti7dt=dt>o. (13) 

Because the entropy production, 6, is always non- 
negative it appears from equation (13) that the follow- 
ing entropy excess of the two-phase stream (taken in 
relation to the quasi-equilib~um) 

P = s, - s; (14) 

constitutes the appropriate criterion for the processes 
considered. Entropy S,, appearing in equation (Id), is 
computed as 

S,=SSSS, (15) 

where signs -t- and - pertain to concurrent and 
countercurrent processes respectively. 

Equation (13) may be transformed into more suit- 
able form by substituting: 

d% 1 di, 
-=- -9 
dt T, dt 

dS 1 di A@ dw, _=_---- 
dt T dt M,T dt ’ 

(16) 

which is common for both concurrent and countercur- 
rent reactors. 

In the calculations, section 4, the Liapunov function, 

V = -(S, - s;,, (20) 

was used which differed in sign from the function (14). 
Its total time derivative (a negative quantity~ 

dV 

dt=- 

was easily computed with the help of the thermody- 
namic relationship 

-.-cc dT+&f.-‘dw, di 

dt ’ dt 
C 

dt 
(22) 

as well as the state equations (2) and (3). 
It is worth emphasizing that (just as for the processes 

without a chemical reaction [l]) the flow quantity &, 
appears as the process potential of the flow systems 
considered. This quantity plays the same role as the 
“usual” entropy in the case of the closed, thermally 
isolated system. The time derivative of Sh( in relation to 
the space time is identical to the adequate time 
derivative of the entropy after chronological time. This 
analogy is helpful when analyzing the thermodynamic 
properties of flow systems. 

4. RESULTS FOR NONCURRENT AND COUNTERCURRENT 
PROCESSES 

The results (obtained with the help of a computer) 
are presentedin Figs. 2 and 3 which show thecurves for 
the constant values of the Liapunov function V and its 
time derivative P. 

In the same diagrams the trajectories of the kinetic 
equations (2) and (3) are drawn. They are character- 
ized by the same values of invariants (4)-(8) (and 
hence by the same singular point) but by different 
starting points. The computational data are taken 
from [3] and pertain to industrial synthesis of 
ammonia : 

;N2 + +HH, = NH,. (23) 

Methane and argon constitute the neutral component 
D. Concentrations at the inlet {in kmol kmol- ‘) are : 
WH, = 0.6525, wiN2 = 0.2715, wiNH, = 0.05, wiAr = 
&tf, = 0.04. 

The results correspond with the following reaction 
rate equation 

E, p’.’ rc = 2 *fi . exp --= 
(17) i > 

- concurrent 
(18) 

Thus we finally get the time derivative of the potential 
criterion t in the form 

A$ dw, -- -- 
M,T dt ’ 

(19) 

where, according to [3], 

E, = 87.152 kJ mol-’ 

fi = 7.498 kJ mole1 

p = 287 atm. 
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I 

1 dh 1. 
I 1 

(a) h h+dh 
I i+di 

w w+dw 
T T+dT 

I I I 
/ dh I_ 
, , 

(b) h h+dh 
I I+dl 

w w+dw 
T T+dT 

W,w,,T,- -Th 

FIG. 1. Flow systems investigated: (a) concurrent reactor, (b) 
countercurrent reactor, (c) continuous flow stirred-tank 

reactor (CSTR). 

The complete set of data may be found in [4]. 
Considering the direct relation between P and 

entropy source the time derivative of V is defined 
negatively. This means that the trajectories of the 
aforementioned processes should evolve toward the 
decreasing values of V. As is seen from Figs. 2 and 3 
this is true for both concurrent and countercurrent 
reactors. 
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Some remarks should be made about I/ itself. In the 
case of the concurrent reactor I/ is positively defined. It 
is bowl-shaped with its minimum at the singular point 
(point 0 in Fig. 2). Comparing the signs of V and P it is 
possible to show the stability of the investigated family 
of trajectories using Liapunov’s second theorem [2]. 

The course of the calculated trajectories confirms this 
conclusion; namely, that all the trajectories evolve in 
the direction of singular point creating a node. 

In the case of the countercurrent reactor the surface 
of I/ has the shape of a saddle. The neighbourhood of 
the singular point (point 0 in Fig. 3) breaks up into 
regions in which the function has different signs. By 
Chetaev’s theorem [2] it becomes possible to state the 
instability of the trajectories; this conclusion is con- 
firmed by integrating the kinetic equations. From the 
diagram of the trajectories, Fig. 3, it is seen that only 
two characteristic trajectories (so called separatrices) 
can approach the singular point for t + + %L. All the 
remaining trajectories flow down through decreasing 
values of V towards its negative regions, omitting the 
singular point. 

The results of [l] and this section indicate that for 
quasi-equilibrium singular points the Liapunov func- 
tions, constructed via thermodynamic approach, may 
constitute efficient criteria for the qualitative exam- 
ination of the trajectories of heat and mass transfer 
processes occurring in non-reacting and reacting sys- 
tems. Using such Liapunov functions it is possible to 
predict the direction of the trajectories’ course, their 
stability, and, (in the case of saddles, Fig. 3) the 
position of the characterisitic trajectories separating 
the areas in which all trajectories have similar proper- 
ties such as extrema of temperature or concentration of 
a valuable component. Such areas of similar properties 
have been marked in Fig. 3 with labels 14. 

v, kJ/kg K 

9*kJ/kg Kh 

” 

I I I I I I * 
3 0 35 0 37 0 33 041 043 045 0 47 049 

WC 3 kg / kg 

FIG. 2. Contours of Liapunov function V(--P-), its time derivative v(-) and trajectories (--) for the 
process of exothermal synthesis in auto-thermal concurrent tubular reactor. 
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FIG. 3. Contours of Liapunov function V(----), its time derivative t’(--) and trajectories (+-) for the 
process of exothermal synthesis in auto-thermal countercurrent tubular reactor. 

v, kJ/ 
0, kJ/ 

kg K 
kgh K 

5. GENERAL REMARKS ABOUT PROCESSES WITH NON- 
EQUILIBRHJM SINGULAR POINT 

When the singular point is the non-equilibrium 
stationary state, the entropy source becomes, as a rule, 
ineffective for constructing the potentials defining 
stability (or instability). This is because in such a 
stationary state the entropy source has a value greater 
than zero, while its excess in relation to the stationary 

state does not have a definite sign. In such cases 
therefore, the Liapunov functions must be constructed 
upon other principles, their time derivatives not being 

proportional to the entropy source. 
It is generally known that the square forms of a 

defined sign can (although do not necessarily) con- 
stitute suitable Liapunov functions and lead to suf- 
ficient conditions of stability. Glansdorff and Prigo- 

WC v kQ/ kQ 

FIG. 4. Trajectories of exothermal synthesis in continuous flow stirred-tank reactor (CSTR). 
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gine [5] suggested the use of the 2nd differential of 
entropy, h2S, as the quantity criterion of this kind. As 
was verified in [6] this quantity is an efficient stability 
criterion when heat and/or mass transfer occurs in 
non-reacting systems. 

However, it may happen (Section 6) that a2.S is 
not decisive about stability (or instability) when the 
transfer of heat or mass occurs together with the 
chemical reaction. Such a situation occurs only in the 
case of the stirred-tank reactor (CSTR) examined 
below. This is connected with the fact that the time 
derivative of h2S loses the constant sign property 
during the transition from equilibrium to the sta- 

tionary singular points. For this reason it will be 
necessary to look for another construction of the 
Liapunov function. Therefore in section 8 the con- 
struction of some generalized criterion function, V,, 
defined as the sum of the thermodynamic function I/ 
and of some “kinetic term” is proposed. It will be 
shown that I/, can determine the stability where V or 
a2S appear to fail. 

6. INAPPROPRIATENESS OF THE PURELY THERMO- 
DYNAMIC LIAPUNOV FUNCTION V FOR C?XR 

In the case of CSTR [Fig. 1, scheme (c)] the system 

evolution proceeds in chronological time, t, and the 
singular point is the non-equilibrium stationary state. 

On the ground of the mass and energy balances we 
get the following dynamic model for CSTR in which 

reaction (1) occurs : 

dwc 
---c 

dt 

M, . rc(T, w(.) + wit - wc 

PE L9 ’ 

di 

dt-pi: 
-s (Th - T) + G. 

Energy equation (26) is equivalent to 

-1 + 
ii - i(T, WC) dw, AH -___ - 

0 dt MC ” I (27) 

Assuming again that the single reaction occurs, the 
remaining concentrations can be evaluated from equa- 
tions (4)-(6). 

(25) 

(26) 

It is possible to show [4] tha: the thermodynamic 
function, 

I/ = i - i” - T”(S - So) - Ap’(w,. - wco), (28) 

is positively defined while its square approximation is 
proportional to the well known non-positive quantity, 
the 2nd differential of the entropy [S]. This means that 

V = - ToAS,,,,, = -; TOPS > 0. (29) 

However, it has been verified that the time derivative of 
this function 

*See inequality (21). V,(x) E ; xT D x, (36) 

(30) 
which, in the case of equilibrium or quasi-equilibrium, 
has a definite sign*, but in the examined process is not 
a function of definite sign. This indefiniteness of sign of 
(30) was confirmed by computations (Fig. 5); it is 
connected with the non-equilibrium nature of the 
singular point. In conection with that, neither V’ nor 
a2S constitute an efficient criterion by means of which 

it is possible to decide the stability (Liapunov’s second 
theorem) or instability (Chetaev’s theorem) of the 
examined system. 

8. CONSTRUCTION OF POTENTIAL v, 

It is hseful to begin seeking a suitable Liapunov 

function, V,, starting from constructing its time de- 
rivative as a function of definite sign. 

Let us consider a linear model of n-coordinates of 

state xi, which is obtained by linearization of the 
original non-linear model described by the original 

state variables Xi. The linearization is performed for 
the definite singular point X0 of the following non- 
linear system 

X =S(X). (31) 

The linearized model has the following vector- 

matrix form 

d=Ax (32) 

where x = 6X is the perturbation around X0 as well as 

= [%J 

We are looking for such a function V, for which, 
from the definition 

(33) 

where B is the symmetrical and positively defined 
matrix of the 2nd-order derivatives in the Taylor 
expansion of the thermodynamic function V, equation 
(28), evaluated at the singular point. As the lst-order 
derivatives vanish at this point one has the square 

approximation : 

1/ = - ; T0a2S = ; xTBx. (34) 

All the elements of matrix B are known from the last 

equation. The constant coefficient a in equation (33) 
enables V, to be of the same dimension as V. 

Substitution of equation (32) into equation (33) 
gives : 

Pdx)=a(Ax)TBAx=axTATBAx. (35) 

As the system (32) is linear and the derivative I/,(x) a 
square quantity, the Liapunov function V,(x) must be 
of the square form, i.e. 
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FIG. 5. 
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0.27 0 29 031 0.33 0.35 

WC I kg/ 
k9 

Contours of thermostatic potential I’----), its time derivative k’(---) and trajectories (+-) for 
exothermal synthesis in CSTR. Steady state S,. 

where D is an unknown symmetrical matrix, the 

elements of which must be found. Differentiation of 
equation (36) using equation (32) yields 

1 1 
f’,(x) = z tTD x + 2 xT D k 

= ; xT(ATD + D A)x. (37) 

After comparing equations (35) and (37) we obtain 
the matrix equation 

aATBA =;(ATD + DA), (38) 

where a, A and B are given. The solution of such 
equations is possible [7] and leads to the following 

result : 

D =f(the elements of matrices B and A). (39) 

Putting the last result into equation (36) yields 

V,(x) = ; xT D(bi,, UJX. (40) 

When equation (38) is solved, (40) becomes explicit 
and as such can be used for applications. The formula 
defines the square Liapunov function which may be 
used in the examination of global stability of the linear 
system (32). However the basic significance of this 
formula relies on the fact that it can also be used in the 
examination of the local stability (in a finite region) of 
the original non-linear system (31). For this purpose it 

becomes meaningful to separate out in (40) the ther- 
mostatic term [equations (28) and (34)]. We may 
write : 

v,(x) = ; x’(D - B)x + ; xT D x. (41) 

Since equation (32) holds, the term A-’ k can be 
substituted instead of x into the first member of the 
right-hand side of equation (41). Then defining the 
“kinetic matrix” K = ki, as 

K = A-IT(D - B)A-’ (42) 

the following potential criterion is obtained: 

V,(x) = ; kT K k + V(x) (43) 

which is composed of the “kinetic” term (with K) and 

the “thermostatic” term V(x) [equation (28)]. 
It is proposed that function (43) be treated as a 

generalization of (40) in the event of non-linear kinetic 
equations [see e.g. equations (25) (26) and (31)]. This 
generalization can be expressed in terms of the original 
(i.e. unperturbed) coordinates as 

V,(X,...xn)=;,~ C kikz z 
z-1 k-l 

+ 1/(X,. . X”). (44) 

Application of equation (44) for the non-linear systems 
is connected with the substitution of the right-hand 
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I I I I I I I I I c 
0 I23 0 127 0 131 0 135 0 139 0 143 0 147 0 151 0 155 

WC * kg 'kg 

FIG 6. Contours of the potential I’,(----), its time derivative t,(---) and trajectories (+-)for exothermal 
synthesis in CSTR. Steady state S,. 

sides of the original state equations [c.f. equation (31)] 
instead of dX,/dt into equation (44) as well as with the 
generally non-square form V. Usually in thermody- 
namics V is an exergy (i.e. available energy) of the 
system with reference state To, ~0. In the case of our 
CSTR the function V is described by equation (28). 

x idd:j~j+~~~~~,~:~)il+Y(%w~)~ 

(47) 
It turns out [4] that when II = 2, the matrices K and 

B are proportional, as well as there being an explicit and its time derivative is [using equation (51)] 

solution for IQ,. The complete analysis may be found in 
[4] ; here we shall give only the final result: ~s=m[f$)To,w,~($ $+j$.$) 

(45) 
PV 

+ @ TO w. dt dwc dt ! 1 

dwc?tic dw, dtic (7T ~_.‘--+__~- 
?T dt < >I 

where + v(T, w(.). (48) 

m = (a,*~,, - a12az*) (46) As V is defined by equation (28), the elements of 

The above formulae will now be applied to the matrix 

CSTR considered in section 6. Assume that the 
exothermic reaction fA + $k? = C is, in presence of D, 
inert. The expanded form of the function V, for our 
CSTR [state variables We. and T, equations (25) and 

(27)] is: 

B are: 
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V kJ / 
0, , ” kJ/ kg 

kg h 
611 - 

609 - 

607 - 

605 - 

FK. 7. Trajectories, V, and t/, for CSTR. Steady state S,. 

The coefficients aik are calculated by differentiating 
the left-hand sides of the dynamic equations (25) and 
(27), giving the derivatives : 

art aT 
a - 

” = aT ( > r”,wp; a’2 = w, r.,wp; ( > 
a+( 

a _ 21 = dT ro,wp; 
c ! 

atic 

a22 = 

H at+ To,wp' 
(52) 

This procedure leads to the computation of the 
coefficient m, equation (46), as well as of the “kinetic” 

matrix K, equation (45). Finally, it is possible to 
compute the function V, and its time derivative i/, from 
formulas (47) and (48), respectively. 

9. RESULTS OF CALCULATIONS FOR CSTR 

It has been assumed that the area of heat exchange F 
= 9.29 m2, the reactor volume v, = 2.83 m3, the 
coefficient of heat exchange k = 102.4 kJ/hm2K from 

which it resulted that B = kF/v, = 336 kJ/hKm3 in 

equation (27). Also it has been calculated that average 
residence time 0 = 0.2333 h, and the temperature of 
the inlet stream to the reactor Ti = 694 K. The 
reaction rate expression used had the structure of 
equation (24). The complete set of data is available 
in [4]. 

For the purpose of verifying the conclusions result- 
ing from the analysis of the Liapunov functions, V 
and V,, the trajectories of the process have been 
computed. They are shown in Fig. 4 in the surround- 
ings of the three stationary states. It is easily seen that 
states S, and S3 are stable and state S, is unstable. 

We can now discuss the relation between the 

functions V, V, and trajectories. In Fig. 5 there are 
trajectories shown in the vicinity of the second (un- 
stable) stationary state S, as well as the curves for the 

constant values of the thermodynamic function V, 

equation (28), and its time derivative k in relation to 
equations (25) and (27). From the graph it appears that 
the time derivative 1/ is not a function of definite sign 
and that there is no relation between the directions of 
increase (or decrease) of the function V and the mode 
of trajectory evolution. Non-effectiveness of V has also 
been observed in other cases, see [4]. As explained 
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FIG. 8. Trajectories, V, and k, for CSTR. Steady state S,. 

earlier, it also means that the S’S criterion fails in all cess of oxidation CO into CO, in which the limit cycle 
these cases. may occur [4]. 

In the Figs. 6-8 the surroundings of the three 
stationary states, S,, S, and S, are shown together 
with the curves for the constant value of the potential 
V, and its time derivative %, The curve T% = 0 is the 
boundary of the area of appiicabi~ty of Vs. In the 
computations it has been stated that the function @, in 
the surroundings of S,-S, is negatively defined, i.e. the 
trajectories should always evolve in the direction of the 
d~reasiugvalues of V,. From Figs. 5-8 it appears that 
it is so indeed ; that means that V, is really the potential 
of the examined non-linear process, in the region 
where P, < 0. 

The data presented in this article and in [I] indicate 
the considerable effectiveness of the Liapunov func- 
tions V and V, in the investigation of stability and for 
predicting qualitative properties of trajectories of heat 
and mass transfer in both reacting and non-reacting 
systems. 

In Fig. 7 we have marked with a + the regions where 
the function V, is positive. The only two trajectories, 
which aim at the state S, and separate the areas of 
stabihty of the stationary states Si and S, (cf. Fig. 41, 
must remain within the area V, > 0. As may be seen in 
Fig. 7 such an effect takes place indeed, and this is an 
example of the effectiveness of function V, in predicting 
the properties of trajectories. 

The present approach makes it possible to chssify 
and to systematize the trajectories according to com- 
mon qnalitat~ve properties {e.g. according to extremes 
of concentrations or temperatures, type of stability, 
etc). Such properties may be discovered, in particular, 
with the aid of a systematic examination of the 
properties of the Liapunov functions V or V,. 
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APPROCHE THERMODYNAMIQUE DES PROPRIETES QUALITATIVES DES 
TRAJECTOIRES DE TRANSFERT DE CHALEUR ET DE MASSE DANS LES SYSTEMES 

D’ECOULEMENT GAZ-SOLIDE-II. SYSTEMES REACTIFS 

.., 
Resume-Cet article constitue la seconde partie du travail matte dans [l]. On ttudie les propriites 
qualitatives et la stabilitt des trajectoires des transferts simultanes de chaleur et de masse dans des systtmes 
rtactifs en ecoulement. Pour ces systemes dans lesquels le point singulier est du type de quasi equilibre, la 
fonction thermodynamique de Liapunov V, qui rtsulte du bilan entropique, est un critere efficace de stabihti 
ou d’instabilitt. Tandis que dans le cas d’un point singulier de non equihbre stationnaire one fonction 
genhale V,, detinie comme la somme de V et d’un terme “cinetique” convient pour la pre’vision des 

propriete’s qualitative et la stabilite des trajectories. 

THERMODYNAMISCHE BEHANDLUNG DER QUALITATIVEN EIGENSCHAFTEN VON 
TRAJEKTORIEN BE1 WARME- UND STOFFUBERTRAGUNG IN GASFESTSTOFF- 

SYSTEMEN-II. REAGIERENDE SYSTEME 

Zusammenfassung-Dieser Artikel beschreibt den zweiten Teil der in [l] begonnenen Arbeit. Es werden die 
qualitativen Eigenschaften und die Stabilitlt von Trajektorien bei simultanen Warme- und Stoffiibertra- 
gungsprozessen in reagierenden Stromungen untersucht. Fur jene Systeme, deren Singularitat vom Quasi- 
Gleichgewichtstyp ist, bildet die thermodynamische Liapunov-Funktion V, die aus der Entropiebilanz 
resultiert, ein brauchbares Stabihtats- oder Instabilitltskriterium. Im Fall einer stationlren Singularitat im 
Ungleichgewicht reicht eine verallgemeinerte Funktion V,, definiert als Summe von V und einigen 
“kinetischen” Termen zur Berechnung der qualitativen Eigenschaften und Stabilitlt von Trajektorien aus. 

TEPMO@iHAMMYECKOE OHMCAHME KAYECTBEHHMX XAPAKTEPMCTMK 
TPAEKTOPMH TEHJIO- M MACCOHEPEHOCA B CMCTEMAX FA30BbIH IIOTOK 

TBEPAOE TEJIO - II. PEAFMPYIOIIIME CMCTEMbI 

AHHOTZWHS - CTaTbB IlBJtBeTCB npononmeHseM paHee Ony6nWKOBaHHOH pa6orbr [I]. kkCneAymTCs 
KaHeCTBeHHbIX XapaKTepHCTHKH W yCTOktHBOCTb TpaeKTOpHfi COBMeCTHOrO TennO- A MaCCOnepeHOCa 
6 pearHpyTO4HX npOTO’4HbIX CI(CTeMaX. ,!@ts CACTeM C KBa3HpaBHOBeCHOfi CHHryJiapHOfi TO’IKOfi KpH- 
TepHeM 3CjT+eKTHBHOfi yCTOk+HiBOCTH (AJtH HeyCToktHBOCTH) MOgeT CJtyrtHTb TepMOnLiHaMHWCKaB 
$y~KmiB JInnyHoBa V. onpeaennebfan Ha 0cHoBe 6anaHca ~HTPo~H~. B cnyqae me CTauHOHapHOti 
HepaBHOBeCHOfi CHHryJtBpHOti TO'IKA LUIR paCV?Ta Ka'iCCTBCHHbIX XapaKTepMCTBK TpaCKTO,,Hfi yno6na 
@~HKUHS 6onee o6mero Brina V,, 0npenenneMan KaK cyMMa V li nekoroporo ~oofnernqeckoro)~ 

cnaraeMor0. 


