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Abstract—This article represents the second part of the work originated in [1]. Study is made of qualitative
properties and stability of trajectories of simultaneous heat and mass transfer in reacting flow systems. For
systems where the singular point is of quasi-equilibrium type the thermodynamic Liapunov function, V,
resulting from the entropy balance, is an efficient stability (or instability) criterion, Whereas in the case of
stationary non-equilibrium singular point a generalized function V, defined as the sum of ¥ and some
“kinetic” term, is suitable for predicting the qualitative properties and stability of trajectories.

NOMENCLATURE
A, = [a;], matric of coefficients a;,, equa-
tion (32);
A.B,C.D, components of reacting fluid;
a, ratio of heat exchange area and volume of
catalytic zone [m~'];
B, = kF/v,, volumetric coefficient of heat

exchange (in computations B was taken
as 23168.6) [kI K™ ' h™! m™3];

B, = [b,], matrix of second order deriv-
atives in Taylor expansion of function V' ;

C4CpCp Invariants, relating concentrations of
components 4, B, D and C [kg kg™'];

Cpr specific heat at constant pressure
[kJkmol ' K~1];

D, symmetric matrix of function V' defined
in terms of matrices A and B;

E..f,, activation energy and frequency factor,

respectively, equation (24) [kJ kmol ™ '];
h, apparatus length [kJ kmol ™ '];

AH, molar heat of reaction [kJ kmol~!];
i, specific enthalpy of solution [kJ kg™ '];
K, =A"'T (D - B)A™!, “kinetic matrix”;
k, heat exchange coefficient
[kim 2K~ 'h"1];
M, molar mass of component C
[kg kmol~'];
S, specific entropy of solution
[kIK kg ];
T, temperature [K];
t space time [schemes (a) and (b), Fig. 1] or

chronological time [scheme (c), Fig. 1];
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University 00-645 Warsaw, Warynskiego 1.
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IThe process at a singular point is equilibrium, quasi-
equilibrium or steady. In the state of quasi-equilibrium
(typical of concurrent and counter-current flow processes)
some small quantity of heat dissipation, because of phase slip,
takes place. It is negligible.
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V,V, thermodynamic Liapunov functions
[kJ kg™ '] or [kIkg™'K~'];

U, reactor volume [m?*];

V., “non<lassical” thermodynamic Lia-
punov function [kJ kg™ '];

W, reactants flow [kg h™'];

w, w4, Wy, W, Wp, mass fractions of reactants
A, B, C and D in reacting solution
[kekg™'];

X, state vector.

Greek symbols

0, average residence time in reactor [h];

A, chemical affinity [kJ kmol™!];

U aliphic, partial thermodynamic potentials of re-
actants [kJ kmol ~'];

& catalyst porosity;

o, density of reacting solution [kg m~3];

G, entropy source [kJ K™ 'm~3h™!];

v, stoichiometic coefficient.

Subscripts

f, final state;

h, unreacting fluid exchanging heat;

i, initial state;

M, two-phase quantity related to the unit

mass flow in reaction zone.

1. INTRODUCTION

IN [1] THE thermodynamic approach was used to
investigate the qualitative properties of the trajectories
of stationary coupled heat and mass transfer processes
occurring in chemically inactive flow systems. We have
analysed those non-reacting systems which were char-
acterized by the quasi-equilibrium singular point} of
the related ordinary differential equations. The analysis
in [1] has included the reduction of coordinates for the
differential equations of the system, by separating so
called process invariants (i.e. the quantities that do not
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change during process course), determination of the
coordinates of the singular point corresponding with
the defined values of invariants as well as the con-
struction of the Liapunov’s function constituting the
stability criterion of the singular state and also the
criterion of the qualitative properties of trajectories.
The Liapunov functions have been constructed in [1]
on the basis of the entropy balance as some “thermo-
dynamic potentials of the flow processes”, ¥, which
constitute the appropriate counterparts of the usual
thermodynamic potentials of closed systems.

The present article contains both an extension of the
theory [1] to the processes with chemical reaction as
well as dealing with the situation when the thermody-
namic approach ceases to be efficient. The article is
composed of two parts. In the first one the process of
the chemical synthesis that occurs in the stationary
concurrent and countercurrent systems is examined,
Fig. 1, schemes (a) and (b). For such systems, which are
characterized by a quasi-equilibrium singular point,
the effectiveness of the purely thermodynamical Lia-
punov function V is proved. In the second part the
unsteady state process in continuous flow stirred-tank
reactor (CSTR) [Fig. 1, scheme (c)] is investigated.
This reactor constitutes the more complicated system
due to the non-equilibrium singular state. It will be
shown that, in consideration of this non-equilibrium
state, the purely thermodynamic criterion ¥ may fail
when determining the stability and, therefore, some
generalized function, V, will be proposed. This func-
tion does not have a purely thermodynamic origin as,
apart from the thermodynamic terms, it includes the
terms connected with the kinetics of reactions.

The advantage of the function V_ is that in a
sufficiently small finite surrounding of the singular
point its time derivative V, is always of definite sign
(this cannot always be said about V in the case of non-
equilibrium). Thanks to this property V, makes it
possible to prove the stability or instability of the
singular point (according to Liapunov’s second theo-
rem or Chetayev’s theorem, respectively [ 2]) as well as
the stability (or instability) of trajectories in some finite
region where the derivative V_ has a constant sign.

1t must be stressed that, given a problem, the same
mathematical method (the second Liapunov method)
may be used to two different purposes.

In the case of the stationary flow processes [Fig. 1,
schemes (a) and (b)] developing in the space along the
apparatus axis, attention is paid to the qualitative
properties of the family of trajectories found in the
neighbourhood of the singular point. Each member of
this family refers to the stationary process. In this case
the purpose of the analysis is usually to perform a

*The value of invariant iy can be computed from the
knowledge of enthalpies i, and i in a definite section of the
reactor. Then solution of equation (8) together with w. = 0
and T = 0 [equations (2) and (3)] makes it possible to
determine the parameters of the singular point T? and w2 [see
also equations (9) and (10)].
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qualitative survey as well as to select a trajectory which
can be considered the best of all steady trajectories.

However, in the case of the unsteady processes [ Fig.
1, scheme (c)] developing in chronological time,
Liapunov’s second method is most often used in order
to determine the stability (or instability) of the dynami-
cal system which is subject to perturbations.

2. MATHEMATICAL MODEL OF THE PROCESSES WITH
THE QUASI-EQUILIBRIUM SINGULAR STATE

In order to show the effectiveness of the purely
thermodynamic approach for the quasi-equilibrium
state we shall consider the changes in temperature and
concentration of the auto-thermal concurrent and
countercurrent tubular reactors [Fig. 1, schemes (a)
and (b)]. Reactors of this type have important appli-
cations, for example in the process of ammonia
synthesis.

During the exothermic reaction,

v A+ vgB=v.C, (n

heat exchange occurs between the reactive catalytic
zone and the non-reactive non-catalytic zone, in which
the reactants are heated. It is assumed that besides the
reactants 4, B, C, there is the non-reacting component,
D, in the fluid. Changes of the process state in the space
time, ¢, may be characterized by the two differential
equations [(2) and (3)] describing respectively, the
mass balance of the component C as well as the heat
balance :

dw -

{t_(ﬂC-MC(e«p)“l @)
dT _
5 = {~Arc+ k(T = T} (o)t (3)

[see also equation (24)].

The remaining variables characterizing the system
may be computed from invariants resulting cor-
respondingly from the conservation of the number of
atoms of elements:

V.M, V.M,

Ca=Ww ot we = Wiy + Wie——, 4)
M, veM
cM M ¢
v.M, v.M,

Cg=Wg+ we = W,p + Wic———, (5)
M veM

Cp=Wp= Wip (6)

as well as from the conservation of energy:
(T, w) — iy(Ty, W) =iy =0
(countercurrent reactor) (7)
in(Ty, W;) + i(T, W) = iy = const*
(concurrent reactor). (8)

Note that if the reactors were not auto-thermal then
the quotient of the mass flow rates of phases flowing
through each zone would appear in equations (7)
and (8).
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Since we are dealing with flow processes it appears
from equations (2) and (3) that the singular point is the
state of thermodynamic quasi-equilibrium for which
the following conditions must be satisfied:

Th =T°, ()]
Az =0, (10)
where
A= vi (v eMpte — v M gt g — vpM pitg)

[of course (10) is equivalent to the condition r, = 0].

3. CONSTRUCTION OF THE THERMODYNAMIC
LIAPUNOV FUNCTION V
The time derivative of the potential criterion V for
the processes {a) and (b) in Fig. | may be found from
the differential balance of entropy:

oF-dh+ W-S+ W-S,
= W(S + dS) + W(S, + dS,)
(11)

{the upper sign pertains to the concurrent reactor and
the lower sign to the countercurrent reactor).
After simplification and using the relationship

g-p-F-dhy/W = dt (12)

we obtain from equation (11):
¢ dS dS %
o _9, ds, dv >0

cCdr At dr o

Py (13)

Because the entropy production, o, is always non-
negative it appears from equation (13) that the follow-
ing entropy excess of the two-phase stream (taken in
relation to the quasi-equilibrium)

V=25,—-5% (14)

constitutes the appropriate criterion for the processes
considered. Entropy Sy, appearing in equation (14), is
computed as

Sy=S+5, (15)

where signs + and — pertain to concurrent and
countercurrent processes respectively.

Equation (13) may be transformed into more suit-
able form by substituting:

ds, 1 di,
= —, 16
dt T, dt (16)
ds 1 di  Ap d
D_2 o wf’ (17
dt T dt M.T dr
diy, di /- concurrent
= F— . 18
dr -~ Tar (+ countercurrent) (18)

Thus we finally get the time derivative of the potential
criterion ¥V in the form
dV /1 1\di  Ag dw
dt \T T1,/dt

, 19
M.T dt (19)
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which is common for both concurrent and countercur-
rent reactors.
In the calculations, section 4, the Liapunov function,

V= —{S5y— S%), (20)

was used which differed in sign from the function (14).
Its total time derivative (a negative quantity)

i A dwe
91:.. l_.i_ g_ H_GWe <0 (21)
dt T T,/dt MT dt
was easily computed with the help of the thermody-
namic relationship

di daT
g2
dr Pdr

as well as the state equations (2) and (3).

1tis worth emphasizing that (just as for the processes
without a chemical reaction [1]) the flow quantity Sy
appears as the process potential of the flow systems
considered. This quantity plays the same role as the
“usual” entropy in the case of the closed, thermally
isolated system. The time derivative of Sy in relation to
the space time is identical to the adequate time
derivative of the entropy after chronological time. This
analogy is helpful when analyzing the thermodynamic
properties of flow systems.

dw,

+ARM "~ 22)

4, RESULTS FOR CONCURRENT AND COUNTERCURRENT
PROCESSES

The results {obtained with the help of a computer)
are presented in Figs. 2 and 3 which show the curves for
the constant values of the Liapunov function ¥ and its
time derivative V.

In the same diagrams the trajectories of the kinetic
equations (2) and (3) are drawn. They are character-
ized by the same values of invariants (4)-(8) (and
hence by the same singular point) but by different
starting points. The computational data are taken
from [3] and pertain to industrial synthesis of

ammonia:
IN, + 3H, = NH,. (23)

Methane and argon constitute the neutral component
D. Concentrations at the inlet (in kmol kmol ™) are:
Wi, = 06525, win, = 02715, wyy, =005, w;,, =
Wicn, = 0.04.

The results correspond with the following reaction
rate equation

E
re=2-f, -exp (_IT;:)I}LS

200\ 1
X yays® [l — exp (?#)L‘
Yo

where, according to [3],
E, = 87.152kJ mol~*
f, = 7498 kJ mol ™!
p = 287 atm.

@4
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FiG. 1. Flow systems investigated : (a) concurrent reactor, (b)
countercurrent reactor, (¢} continuous flow stirred-tank
reactor (CSTR).

The complete set of data may be found in [4].

Considering the direct relation between ¥ and
entropy source the time derivative of V is defined
negatively. This means that the trajectories of the
aforementioned processes should evolve toward the
decreasing values of V. As is seen from Figs. 2 and 3
this is true for both concurrent and countercurrent
reactors.
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Some remarks should be made about V itself. In the
case of the concurrent reactor V is positively defined. It
is bowl-shaped with its minimum at the singular point
(point 0in Fig. 2). Comparing the signs of ¥ and V it is
possible to show the stability of the investigated family
of trajectories using Liapunov’s second theorem [2].
The course of the calculated trajectories confirms this
conclusion ; namely, that all the trajectories evolve in
the direction of singular point creating a node.

In the case of the countercurrent reactor the surface
of V has the shape of a saddle. The neighbourhood of
the singular point (point 0 in Fig. 3) breaks up into
regions in which the function has different signs. By
Chetaev’s theorem [2] it becomes possible to state the
instability of the trajectories; this conclusion is con-
firmed by integrating the kinetic equations. From the
diagram of the trajectories, Fig. 3, it is seen that only
two characteristic trajectories (so called separatrices)
can approach the singular point for t - + . All the
remaining trajectories flow down through decreasing
values of V towards its negative regions, omitting the
singular point.

The results of [1] and this section indicate that for
quasi-equilibrium singular points the Liapunov func-
tions, constructed via thermodynamic approach, may
constitute efficient criteria for the qualitative exam-
ination of the trajectories of heat and mass transfer
processes occurring in non-reacting and reacting sys-
tems. Using such Liapunov functions it is possible to
predict the direction of the trajectories’ course, their
stability, and, (in the case of saddles, Fig. 3) the
position of the characterisitic trajectories separating
the areas in which all trajectories have similar proper-
ties such as extrema of temperature or concentration of
a valuable component. Such areas of similar properties
have been marked in Fig. 3 with labels 1-4.

033
wc

0.39 04l

0.43
kg s kg

FiG. 2. Contours of Liapunov function V(~——~), its time derivative ¥(——) and trajectories (~—) for the
process of exothermal synthesis in auto-thermal concurrent tubular reactor.
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F1G. 3. Contours of Liapunov function V(----), its time derivative ¥(——) and trajectories (——) for the

process of exothermal synthesis in auto-thermal countercurrent tubular reactor.

5. GENERAL REMARKS ABOUT PROCESSES WITH NON-
EQUILIBRIUM SINGULAR POINT

When the singular point is the non-equilibrium
stationary state, the entropy source becomes, as a rule,
ineffective for constructing the potentials defining
stability (or instability). This is because in such a
stationary state the entropy source has a value greater
than zero, while its excess in relation to the stationary

740
7201
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540

state does not have a definite sign. In such cases
therefore, the Liapunov functions must be constructed
upon other principles, their time derivatives not being
proportional to the entropy source.

It is generally known that the square forms of a
defined sign can (although do not necessarily) con-
stitute suitable Liapunov functions and lead to suf-
ficient conditions of stability. Glansdorff and Prigo-
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F1G. 4. Trajectories of exothermal synthesis in continuous flow stirred-tank reactor (CSTR).
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gine [5] suggested the use of the 2nd differential of
entropy, 628, as the quantity criterion of this kind. As
was verified in [6] this quantity is an efficient stability
criterion when heat and/or mass transfer occurs in
non-reacting systems.

However, it may happen (Section 6) that §2S is
not decisive about stability (or instability) when the
transfer of heat or mass occurs together with the
chemical reaction. Such a situation occurs only in the
case of the stirred-tank reactor (CSTR) examined
below. This is connected with the fact that the time
derivative of 82S loses the constant sign property
during the transition from equilibrium to the sta-
tionary singular points. For this reason it will be
necessary to look for another construction of the
Liapunov function. Therefore in section 8 the con-
struction of some generalized criterion function, V,,
defined as the sum of the thermodynamic function V
and of some “kinetic term” is proposed. It will be
shown that V_can determine the stability where V or
828 appear to fail.

6. INAPPROPRIATENESS OF THE PURELY THERMO-
DYNAMIC LIAPUNOV FUNCTION V FOR CSTR

In the case of CSTR [Fig. 1, scheme (c)] the system
evolution proceeds in chronological time, ¢, and the
singular point is the non-equilibrium stationary state.

On the ground of the mass and energy balances we
get the following dynamic model for CSTR in which
reaction (1) occurs:

dw. _ M r (T, w.) 4 Wie w(«, 25)
dt pe 0
di B =i
=Ty —T)+ ——. 26
R U (26)
Energy equation (26) is equivalent to
dT B
—=|=(Ty— T
de [péi( " )
i —i(T,we) dwe AH| _|
—_— = — . (27
0 @ M| @D

Assuming again that the single reaction occurs, the
remaining concentrations can be evaluated from equa-
tions (4)—(6).

It is possible to show [4] that the thermodynamic
function,

V=i-i®—T%S — S% — Ap®(we — wO), (28)
is positively defined while its square approximation is
proportional to the well known non-positive quantity,
the 2nd differential of the entropy [5]. This means that

1
V=—T%S yu = ) T°5’S = 0. (29)
However, it has been verified that the time derivative of
this function

*See inequality (21).
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y_ _wo| (1 1\di Au  Ap° -, dwe
d T |:<T T°>dr (T T°>M“ dt ]

(30)
which, in the case of equilibrium or quasi-equilibrium,
has a definite sign*, but in the examined process is not
a function of definite sign. This indefiniteness of sign of
(30) was confirmed by computations (Fig. 5); it is
connected with the non-equilibrium nature of the
singular point. In conection with that, neither V nor
82S constitute an efficient criterion by means of which
it is possible to decide the stability (Liapunov’s second
theorem) or instability (Chetaev’s theorem) of the
examined system.

8. CONSTRUCTION OF POTENTIAL ¥,

It is useful to begin seeking a suitable Liapunov
function, V, starting from constructing its time de-
rivative as a function of definite sign.

Let us consider a linear model of n-coordinates of
state x;, which is obtained by linearization of the
original non-linear model described by the original
state variables X,. The linearization is performed for
the definite singular point X° of the following non-
linear system

X =f(X). (31)

The linearized model has the following vector-
matrix form

(32)

where x = §Xis the perturbation around X° as well as

X1
A= l:a—Xk:Lo = [ay].

We are looking for such a function V for which,
from the definition

X=AX

V. (x)=axBx (33)

where B is the symmetrical and positively defined
matrix of the 2nd-order derivatives in the Taylor
expansion of the thermodynamic function V, equation
(28), evaluated at the singular point. As the 1st-order
derivatives vanish at this point one has the square
approximation:

1 1
V=—-T%8= 5 x"Bx.

5 (34)

All the elements of matrix B are known from the last
equation. The constant coefficient a in equation (33)
enables V', to be of the same dimension as V.

Substitution of equation (32) into equation (33)
gives:

Vix)=a(Ax)TBAx =ax"ATBAx. (35)

As the system (32) is linear and the derivative V (x) a
square quantity, the Liapunov function V (x) must be
of the square form, ie.

1
Vix) = x"Dx, (36)
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Fic. 5. Contours of thermostatic potential V(~——-), its time derivative ¥'(——) and trajectories (——) for
exothermal synthesis in CSTR. Steady state S,.

where D is an unknown symmetrical matrix, the
elements of which must be found. Differentiation of
equation (36) using equation (32) yields

1 1
Vs(x)=5)'(TDx+ExTDX

= %xT(ATD +DAX. (37)

After comparing equations (35) and (37) we obtain
the matrix equation

aATBAzé(ATD+DA), (38)

where a, A and B are given. The solution of such

equations is possible [7] and leads to the following
result:

D = f(the elements of matrices B and A). (39)

Putting the last result into equation (36) yields

V.(x) = 5 X" Dby s ()
When equation (38) is solved, (40) becomes explicit
and as such can be used for applications. The formula
defines the square Liapunov function which may be
used in the examination of global stability of the linear
system (32). However the basic significance of this
formula relies on the fact that it can also be used in the
examination of the local stability (in a finite region) of
the original non-linear system (31). For this purpose it

becomes meaningful to separate out in (40) the ther-
mostatic term [equations (28) and (34)]. We may
write :
1 T, 1 T
Vs(x)=§x (D—B)x+§x D x. 41)
Since equation (32) holds, the term A~!' % can be
substituted instead of x into the first member of the

right-hand side of equation (41). Then defining the
“kinetic matrix” K = k;, as

K=A"'(D-BA™! 42)
the following potential criterion is obtained:
1
V(x)= EXT Kx + V(x) (43)

which is composed of the “kinetic” term (with K) and
the “thermostatic” term V(x) [equation (28)].

It is proposed that function (43) be treated as a
generalization of (40) in the event of non-linear kinetic
equations [see e.g. equations (25) (26) and (31)]. This
generalization can be expressed in terms of the original
(i.e. unperturbed) coordinates as

1 dx, dx

V(X,...X)== ky —t =k

5( 1 n) zigl k;} ik dl d[
+V(X,...X,) 44

Application of equation (44)for the non-linear systems
is connected with the substitution of the right-hand
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F1G. 6. Contours of the potential V (~-—-),its time derivative ¥ (——)and trajectories {(—-—)for exothermal
synthesis in CSTR. Steady state S,.

sides of the original state equations [c.f. equation (31)]
instead of dX ;/dt into equation (44), as well as with the
generally non-square form V. Usually in thermody-
namics V is an exergy (i.e. available energy) of the
system with reference state T°, u?. In the case of our
CSTR the function V is described by equation (28).

It turns out [4] that when n = 2, the matrices K and
B are proportional, as well as there being an explicit
solution for k;,. The complete analysis may be found in
[4]; here we shall give only the final result:

K=mB v 45)
IR F )
where
m=(a; a,; — ay,4;,) (46)

The above formulae will now be applied to the
CSTR considered in section 6. Assume that the
exothermic reaction 4 + 3B = C'is, in presence of D,
inert. The expanded form of the function V| for our
CSTR [state variables w. and T, equations (25) and
(27)] is:

o), (T2
s—am A2 v A A
2" \o77 ) o\t ToW o o
T\ [dwe\  (*V dwe \2
LN (e, (2 e V(T w,),
<df)<d‘ >+<‘3W?~>ro.w9<dt *Vihwo

(47)
and its time derivative is [using equation (51)]
lid % dT (0T dT oT dw,
Vi=m|| = — s
0T ) o 0 dt \OT dt = 0w, dt
BV dwedic dwe Qe oT
(m o 4t Owe dt AT dr
+ V(T, w). (48)

As V is defined by equation (28), the elements of

matrix B are:
%
(w-rz) =bn =
¢ T w?

2’V 0AL
2 = bzz =M: ! He > (50)
OWE /1o o W Jro

ln
RS

(49)
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i a2V
LA B =by, =by, =0.
(aw(\arlo,w? <araw(<>r.,vw? 2= b2 =0

(51)

The coefficients a;, are calculated by differentiating
the left-hand sides of the dynamic equations (25) and
(27), giving the derivatives:

et aT
a;,; = aT s Q12 = av’ ;
oW /0w

ow, ow,.
ax = <T7(~> y G2 = <(’hw(> . (52)
O 0w W/ 10, wp

This procedure leads to the computation of the
coefficient m, equation (46), as well as of the “kinetic”
matrix K, equation (45). Finally, it is possible to
compute the function V', and its time derivative V' from
formulas (47) and (48), respectively.

9. RESULTS OF CALCULATIONS FOR CSTR
It has been assumed that the area of heat exchange F
= 929 m? the reactor volume v, = 2.83 m? the
coefficient of heat exchange k = 1024 kJ/hm?K from

which it resulted that B = kF/v, = 336 kJ/hKm? in
equation (27). Also it has been calculated that average
residence time @ = 0.2333 h, and the temperature of
the inlet stream to the reactor 7; = 694 K. The
reaction rate expression used had the structure of
equation (24). The complete set of data is available
in [4].

For the purpose of verifying the conclusions result-
ing from the analysis of the Liapunov functions, V
and V,, the trajectories of the process have been
computed. They are shown in Fig. 4 in the surround-
ings of the three stationary states. It is easily seen that
states S, and S, are stable and state S, is unstable.

We can now discuss the relation between the
functions V, V_ and trajectories. In Fig. 5 there are
trajectories shown in the vicinity of the second (un-
stable) stationary state S, as well as the curves for the
constant values of the thermodynamic function V,
equation (28), and its time derivative V in relation to
equations (25)and (27). From the graph it appears that
the time derivative V is not a function of definite sign
and that there is no relation between the directions of
increase (or decrease) of the function V and the mode
of trajectory evolution. Non-effectiveness of V' has also
been observed in other cases, see [4]. As explained
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earlier, it also means that the 528 criterion fails in all
these cases.

In the Figs. 6-8 the surroundings of the three
stationary states, S;, S, and S, are shown together
with the curves for the constant value of the potential
¥, and its time derivative ¥ . The curve ¥, = 0O is the
boundary of the area of applicability of V. In the
computations it has been stated that the function V' in
the surroundings of §,—§; is negatively defined, Le. the
trajectories should always evolve in the direction of the
decreasing values of ¥ . From Figs. 6-8 it appears that
itis so indeed ; that means that ¥ is really the potential
of the examined non-linear process, in the region
where V_ < 0.

In Fig. 7 we have marked with a + the regions where
the function V is positive. The only two trajectories,
which aim at the state S, and separate the areas of
stability of the stationary states S, and S, {cf. Fig. 4),
must remain within the area V, > 0. As may be seen in
Fig. 7 such an effect takes place indeed, and this is an
example of the effectiveness of function V in predicting
the properties of trajectories.

The usefulness of V', as the Liapunov criterion has
also been verified for another, highly non-linear pro-

cess of oxidation CO into CO, in which the limit cycle
may occur {4].

The data presented in this article and in {1] indicate
the considerable effectiveness of the Liapunov func-
tions ¥ and V| in the investigation of stability and for
predicting qualitative properties of trajectories of heat
and mass transfer in both reacting and non-reacting
systems.

The present approach makes it possible to classify
and to systematize the trajectories according to com-
mon qualitative properties {e.g. according to extremes
of concentrations or temperatures, type of stability,
etc). Such properties may be discovered, in particular,
with the aid of a systematic examination of the
properties of the Liapunov functions V or ¥
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APPROCHE THERMODYNAMIQUE DES PROPRIETES QUALITATIVES DES
TRAJECTOIRES DE TRANSFERT DE CHALEUR ET DE MASSE DANS LES SYSTEMES
D’ECOULEMENT GAZ-SOLIDE—II. SYSTEMES REACTIFS

Résumé—Cet article constitue la seconde partie du travail initié dans [1]. On étudie les propriétés

qualitatives et la stabilité des trajectoires des transferts simultanés de chaleur et de masse dans des systémes

réactifs en écoulement. Pour ces systémes dans lesquels le point singulier est du type de quasi équilibre, la

fonction thermodynamique de Liapunov V, qui résulte du bilan entropique, est un critére efficace de stabilité

ou d'instabilité. Tandis que dans le cas d’un point singulier de non équilibre stationnaire une fonction

generale V,, definie comme la somme de V et d'un terme “cinetique™ convient pour la prevision des
propriétes qualitative et la stabilit€ des trajectories.

THERMODYNAMISCHE BEHANDLUNG DER QUALITATIVEN EIGENSCHAFTEN VON
TRAJEKTORIEN BEI WARME- UND STOFFUBERTRAGUNG IN GAS-FESTSTOFF-
SYSTEMEN-——II. REAGIERENDE SYSTEME

Zusammenfassung—Dieser Artikel beschreibt den zweiten Teil der in [1] begonnenen Arbeit. Es werden die
qualitativen Eigenschaften und die Stabilitit von Trajektorien bei simultanen Wirme- und Stoffiibertra-
gungsprozessen in reagierenden Strémungen untersucht. Fiir jene Systeme, deren Singularitdt vom Quasi-
Gleichgewichtstyp ist, bildet die thermodynamische Liapunov-Funktion V, die aus der Entropiebilanz
resultiert, ein brauchbares Stabilitdts- oder Instabilitdtskriterium. Im Fall einer stationiren Singularitat im
Ungleichgewicht reicht eine verallgemeinerte Funktion V,, definiert als Summe von V und einigen
“kinetischen” Termen zur Berechnung der qualitativen Eigenschaften und Stabilitit von Trajektorien aus.

TEPMOJAWMHAMMUWYECKOE ONMUCAHUE KAYECTBEHHBIX XAPAKTEPUCTHUK
TPAEKTOPUH TEITJIO- U MACCOINEPEHOCA B CUCTEMAX T"A30BBIH [IOTOK —
TBEPJIOE TEJIO — II. PEATUPYIOIIUE CUCTEMBI

Aunoramms — CTaTha SBJISETCA NPOJOIKEHHEM paHee onybiukosaHHo# paborwl [1]. Hccneayrorcs
Ka4eCTBEHHbIX XaPAKTEPUCTUKH H YCTOHYMBOCTb TPAEKTOPHH COBMECTHOrO TEIIO- M MaccolepeHoca
B pEarMpyloulnx MPOTOYHBIX CHCTEMax. g CHCTEM C KBa3MPAaBHOBECHOH CHHIYJIAPHOH TOYKOH KpH-
TepueM 3QHEKTHBHOH YCTOHYMBOCTH (MJIM HEYCTOHYMBOCTH) MOXET CIyXHTb TEPMOIMHAMMYECKAs
¢ynxuus Jlanywosa V., onpenenseMas Ha ocHoBe OajaHca SHTponui. B ciydae ke cTaumoHapHoit
HEPaBHOBECHOH CHHIyJIAPHOW TOYKH AJsl PacyeTa KaueCTBEHHBIX XAPaKTEPUCTHK TPAEKTOPHil yaobua
¢ynkuus Gonee obutero Buaa V,, onpeldenseMas Kak cyMMa V' M HEKOTOPOIO «KHMHETHHYECKOTO»
cJ1araeMoro.
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